Boris Zemelman
- Associate Professor
- Neuroscience
- Interdisciplinary Life Sciences Graduate Programs
Accepting graduate students 25-26 academic year
Contact Information
Research
We strive to understand the role of hippocampus in memory formation by manipulating its functional elements, namely the assemblies of cells that carry out particular tasks. This objective raises four practical questions. How are such assemblies to be defined? How can they be accessed? How might their activity be perturbed? And how should the resulting change in the system be detected and evaluated? Hippocampal neurons are organized into three broad classes: excitatory, inhibitory and modulatory. In some cases, the classes can be subdivided further, on the basis of neurochemical markers, mainly calcium binding proteins and neurotransmitters. We work in mice, using these differences in the complement of expressed proteins to target specific cell populations. As an alternative, we are testing several new genetic approaches designed to identify and access neurons displaying heightened activity during memory tasks. Selected neurons are sensitized to subsequent manipulation using a variety of heterologous receptors and ion channels. We then evaluate the effects of cell-type specific optical or pharmacological perturbation on hippocampal circuit dynamics (using awake 2-photon imaging and in vitro electrophysiology) and on animals' memory functions (using behavioral assays).
Research Areas
- Neuroscience
- Learning and Memory
Fields of Interest
- Molecular Biology, Genetics & Genomics
- Electrophys, Optogenetics & Chemogenetics
- Optical Imaging
- Behavior
- Cellular/Molecular/Structure
- Learning/Memory/Plasticity
Education
- Memorial Sloan-Kettering Cancer Center: Postdoctoral
- Stanford: PhD Biochemistry
- MIT: BS Biology
Publications
Zemelman BV, Chu SH, Walker WA. Host response to Escherichia coli heat-labile enterotoxin via two microvillus membrane receptors in the rat intestine. Infect Immun. 1989;57:2947-52. PMID: 2674013
Zemelman BV, Walker WA, Chu SH. Expression and developmental regulation of Na+,K+ adenosine triphosphatase in the rat small intestine. J Clin Invest. 1992;90:1016-22. PMID: 1325991
Brook JD, Zemelman BV, Hadingham K, Siciliano MJ, Crow S, Harley HG, Rundle SA, Buxton J, Johnson K, Almond JW, et al. Radiation-reduced hybrids for the myotonic dystrophy locus. Genomics. 1992;13:243-50. PMID: 1612584
Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohn R, Zemelman BV, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell. 1992; 68:799-808. PMID: 1568252
Bruckner RC, Dutch RE, Zemelman BV, Mocarski ES, Lehman IR. Recombination In vitro between herpes simplex virus type 1 a sequences. Proc Natl Acad Sci U S A. 1992;89:10950-10954. PMID: 1332062
Dutch RE, Zemelman BV, Lehman IR. Herpes simplex virus type 1 recombination: the Uc-DR1 region is responsible for the recombinogenic nature of the viral a sequences. J Virology. 1994;68:3733-3741. PMID: 8189511
Weber T, Zemelman BV*, McNew JA*, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE. SNAREpins: minimal machinery for membrane fusion. Cell. 1998;92:759-772. PMID: 9529252
McNew JA, Coe JG, Sogaard M, Zemelman BV, Wimmer C, Hong W, Sollner TH. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Lett. 1998;435:89-95. PMID: 9755865
De Angelis DA, Miesenböck G, Zemelman BV, Rothman JE. PRIM: Proximity imaging of green fluorescent protein-tagged polypeptides. Proc Natl Acad Sci U S A. 1998;95:12312-16. PMID: 9770483
Zemelman BV, Miesenböck G. Genetic schemes and schemata in neurophysiology. Curr Opin Neurobiol. 2001;11:409-14. PMID: 11502385
Zemelman BV, Lee GA, Ng M, Miesenböck G. Selective photostimulation of genetically chARGed neurons. Neuron. 2002;33:15-22. PMID: 11779476
Huang KJ, Zemelman BV, Lehman IR. Endonuclease G, a candidate human enzyme for the initiation of genomic inversion in herpes simplex type 1 virus. J Biol Chem. 2002;277:21071-9. PMID: 11912214
Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenböck G. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron. 2002;36:463-74. PMID: 12408848
Zemelman BV, Nesnas N, Lee GA, Miesenböck G. Photochemical gating of heterologous ion channels: Remote control over genetically designated populations of neurons. Proc Natl Acad Sci USA. 2003;100:1352-7. PMID: 12540832
Varga V*, Losonczy A*, Zemelman BV*, Borhegyi Z, Nyiri G, Domonkos A, Hangya B, Holderith N, Magee J and Freund T. Fast synaptic activation of hippocampal circuits by subcortical serotonergic and glutamatergic inputs. Science. 2009;326:449-53. PMID: 19833972
Losonczy A*, Zemelman BV*, Vaziri A and Magee J. Network mechanisms of theta-related neuronal activity in hippocampal CA1 pyramidal neurons. Nature Neuroscience. 2010;13:967-72. PMID: 20639875
Andrasfalvy B, Zemelman BV, Tang J and Vaziri A. Two-photon optogenetic control of neural activity with single cell resolution by sculpted light. Proc Natl Acad Sci USA. 2010;107:11981-6. PMID: 20543137
Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsáki G and Magee J. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci. 2010;31:2279-91. PMID: 20529127
Kätzel D, Zemelman BV, Buetfering C, Wölfel M, Miesenböck G. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nature Neuroscience. 2011;14:100-7. PMID: 21076426
Borghuis BG, Tian L, Xu Y, Nikonov SS, Vardi N, Zemelman BV, Looger LL. Imaging light responses of targeted neuron populations in the rodent retina. J Neuroscience. 2011;31:2855-67. PMID: 21414907
Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F, Sun X-H, Nicoud J-F, Zemelman BV, Sternson SM and Losonczy A. Regulation of neuronal input output transformation by tunable dendritic inhibition. Nature Neuroscience. 2012;15:423-430. PMID: 22246433
Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee J and Buzsáki G. Control of timing, rate and firing patterns of hippocampal place cells by dendritic and perisomatic inhibition. Nature Neuroscience. 2012;15:769-775. PMID: 22446878
Lovett-Barron M, Kaifosh P, Khierbek MA, Danielson N, Zaremba J, ReardonTR, Turi GF, Hen R, Zemelman BV and Losonczy A. Dendritic Inhibition in the Hippocampus Supports Fear Learning. Science. 2014;343:857-63. PMID: 24558155
Andoni S, Zemelman BV, and Priebe NJ. Thalamocortical Phase Coupling During Spontaneous and Stimulus-evoked Activity in the Visual System (Submitted)
- Workman ER, HaddickPCG, ZemelmanBV, and Raab-Graham KF. Rapid Antidepressant Stimulates Decoupling of GABABR from GIRK/Kir3 through 14-3-3η (Submitted)